

University of Peradeniya

Enhancing End-to-end Autonomous Driving with **Trajectory-Guided Control Prediction**

D.M.D.R. Dissanayake¹, S.S. Weerasooriya¹, Supervised by: R.G. Ragel¹, G. Kulathunga²

¹Computer Engineering Department, Faculty of Engineering, University of Peradeniya, Sri Lanka ²Computer Engineering Department, Innopolis University, Innopolis, Republic of Tatarstan, Russia

Abstract- Trajectory Guided Control Prediction (TCP) framework, is a state-of-the-art end-to-end learning model for autonomous driving. This research introduces innovative enhancements by proposing two key methodologies to address specific limitations in TCP's performance.

Figure 01: Improved TCP framework with the monocular depth branch

From a single camera input to controlling a vehicle

- Model takes a monocular camera image, velocity, high-level control command, and the destination as inputs.
- A depth map is predicted using Monodepth2.
- Predicts the trajectory and controls simultaneously. \bullet
- Depending on the situation the control command predictions or trajectory predictions are chosen. Trajectory Predictions are converted to control commands using model predictive control.

Aim : To improve the performance of the Trajectory Guided Control Prediction framework by incorporating guidance from depth-based disparity features and improving the control component by replacing the PID controllers in the original framework with MPC controllers.

Model Predictive Controler States •Position x (x) •Position y (y) •Heading (ψ) •Velocity (v)

How to evaluate

- Route completion: Percentage of the route distance completed by an agent.
- Infraction Penalty Agents start with an ideal 1.0 base score, which is reduced by each type of infraction committed.
- Driving Score Route completion x Infraction Penalty

	Route Completion (%)	Infraction Penalty	Score Composed (%)
Depth Attention	89.610365	0.7963287951	70.25550424
ТСР	66.50126694	0.7826396398	50.2746211

Table 01: Results compared to the TCP model

Future Improvements

- Use a complex model for the MPC. (kinematic bicycle model was used) \bullet
- Make the MPC parameters trainable. \bullet

Figure 02: Tested using CARLA simulator

Economic Advantages

- Expensive equipment like LiDAR, or lacksquarethermal cameras are not needed.
- Could be implemented with a

minimum cost.

Contact details Name : Name1@213 Tel. No.: +94***** Email : abcd@eng.pdn.ac.lk

Multidisciplinary AI Research Centre (MARC) University Research Council University of Peradeniya Peradeniya, 20400, Sri Lanka

Jniversity of Peradeniv