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Abstract- Artificial Intelligence plays a significant role inside classrooms with the rapid development in
online education during the COVID-19 pandemic. Our work addresses online education challenges by using
gaze estimation and head pose detection to improve attention tracking without any wearable devices. It also
employs novel semantic communication methods to reduce bandwidth limitations, enhancing the online
kIearning experience.
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EyeNet Model

The video frames are extracted from the user and the Structural Similarity Index (SSIM), i.e., metric to

o R evaluate similarity of two images, is calculated. If SSIM is greater than a given threshold, it is sent as an

Left and right eye P_’ Series of convolution Heatmap N SoftMax ‘+ - intra-frame and if not, it is sent as a residual frame. The frames selected for Intra Frame transmission

regions | andresidual layers Prediction operation j are subjected to compression after identifying the face area using the Shape predictor 68 facial
- S landmarks in dlib and OpenCV libraries.

In the approach of estimating the gaze; the eye-images are--se-nt-thro-ug—h-a-series-of convolution and
residual layers to predict the heatmap for the eye which represents the likelihood of each pixel being __ Semanticinformation
the gaze point. The probability of each pixel being the gaze point can be calculated from
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” Head Pose Estimation B -

The gaze direction does not only depend on the eye regions which are extracted, also depends on
the head pose orientation which determines the orientation of participants’ heads in 3D space.
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Gaze estimation and head pose estimation are combined together to predict the point user is looking at
the screen. Different areas of the presentation have been assigned a score based on their criticality and
overlapping between the defined areas and predicted gaze points are mapped into an attention score.
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Model results under subjects with
Identified face area Compressed face Reconstructed face masks and low light conditions.

of size 17.5 kB. Image of size 2 kB. Image using GFPGAN.
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Achieved compression ratio is 0.019. Hence, the new bandwidth required is approximately only 0.2
times of the original bandwidth leading to a substantial reduction of the required bandwidth for video
transmission.
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